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ABSTRACT 
Fuzzy regression models have been applied to operational research applications such as forecasting. The 

weakest t-norm (Tw) based fuzzy regression model is developed using the concept of least absolute deviation 

defined between the observed and the estimated dependent values. This study compares the efficiency of each 

estimated with the different measures based on LAD. The fuzzy regression model using LAD based on 

Hausdorff distance is evaluated with a case study of investigating the relationship between Diesel Fuel 

properties and emissions from engines. 

KEYWORDS: Weakest t-norm, Fuzzy regression, Fuzzy input- fuzzy output, Similarity  

I. INTRODUCTION 
 Fuzzy set theory provides a significant alternative to the probabilistic approach to find the various 

arithmetic operations for evaluating the performance of the system.  In recent times, the use of fuzzy sets has 

been gaining popularity and is playing an important role in the areas of engineering and management 

disciplines.  As compared to other research domains, the fuzzy arithmetic gained great interest in scientific areas 

such as decision problem, reliability analysis, optimization etc. Most of the data collected from various 

resources are generally imprecise, vague and uncertain.  Therefore to handle these types of data, fuzzy set theory 

has been used and then analyzed. Recently, for example, fuzzy regression models have been applied to 

insurance [1], housing [2], thermal comfort forecasting [3], productively and consumer satisfaction [4], product 

life cycle prediction [5], reservoir operations [6], actuarial analysis [7] and business cycle analysis [8]. Tanaka et 

al. [9] initially applied their fuzzy linear regression procedure to non-fuzzy experimental data. They formulated 

the fuzzy linear regression problem as a linear programming model to determine the regression coefficients as 

fuzzy numbers, where the objective is to minimize the total spread of the fuzzy regression coefficients subject to 

the constraint that the support of the estimated values is needed to cover the support of their associated observed 

values for a certain pre-specified level.    
 The main drawback of Tanaka’s approach is the scale dependent.  Although this approach was later 

improved by Tanaka and Watada [10], Tanaka et al. [11] still suffered the problem of being extremely sensitive 

to outliers as pointed out by Redden and Woodall [12]. The main purpose of fuzzy regression models is to find 

the best model with the least error. Based on this, the methods are classified as follows: 

(i) Possibilistic approach, which tries to minimize the fuzziness of the model by minimizing the total spread of 

its fuzzy coefficients, subject to include the data points of each sample within a specified feasible data interval. 

(ii) Least square approach, which minimizes the total spread of errors in the estimated value, based on their 

specification.  This approach is an extension of ordinary least squares which obtains the best fitting to the data, 

based on the distance measure under fuzzy consideration. 

 Regression analysis based on the method of least -absolute deviation has been used as a robust method.  

When outlier exists in the response variable, the least absolute deviation is more robust than the least square 

deviations estimators.  Some recent works on this topic are as follows: Chang and Lee [13] studied the fuzzy 

least absolute deviation regression based on the ranking method for fuzzy numbers. Kim et al. [14] proposed a 

two stage method to construct the fuzzy linear regression models, using a least absolutes deviations method. 

Torabi and Behboodian [15] investigated the usage of ordinary least absolute deviation method to estimate the 

fuzzy coefficients in a linear regression model with fuzzy input – fuzzy output observations.  Considering a 

certain fuzzy regression model, Chen and Hsueh [16] developed a mathematical programming method to 

determine the crisp coefficients.  Fuzzy regression model, based on L1 norm (absolute norm) criteria. Choi and 
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Buckley [17] suggested two methods to obtain the least absolute deviation estimators for common fuzzy linear 

regression models using TM based arithmetic operations.  Taheri and Kelkinnama [18] introduced some least 

absolute regression models, based on crisp input- fuzzy output and fuzzy input-fuzzy output data respectively. 

There are models [11, 15, 19] in fuzzy regression in which two objectives are considered: minimizing the 

width of the regression coefficients and bringing the h-cut of the predicted values as close as possible to the h-

cut of the observed values. In the proposed method first objective is to minimize the distance between the 

observed and estimated using different LAD and the second objective is to minimize the dissimilarity between 

these two of fuzzy numbers using GMIR.  

In a regression model, multiplication of fuzzy numbers are done by arithmetic operations such as  -

levels of multiplication of fuzzy numbers and the approximate formula for multiplication of fuzzy numbers. The 

 -cut arithmetic cannot effectively preserve the original shape of a membership function, but by using the 

weakest T – norm (Tw), the shape of fuzzy numbers in multiplication will be preserved. The Tw- norm based 

operations reduce the width of the estimated responses which will give exact prediction.  In this regard, Hong et 

al. [20] presented a method to evaluate fuzzy linear regression models based on a possibilistic approach, using 

Tw - norm based arithmetic operations. 

 In this paper, section II focuses on some important preliminary definitions and basics on fuzzy 

arithmetic operations based on the weakest T-norm and the different LAD distances between the responses are 

discussed using the shape preserving operations on fuzzy numbers and in section III, different LAD using The 

weakest t- norm operations are investigated with fuzzy input/ fuzzy output and in section IV, the Least absolute 

deviation using Hausdorff distance is studied with all possible data types, also a case study with crisp multiple 

inputs investigating the relation between the fuel properties and emission of engines.   
 

II. THE WEAKEST T-NORM ARITHMETIC OPERATIONS 

 Since this study concerns fuzzy arithmetic based on the weakest norm, this section will briefly 

discusses Tw norm (the weakest t-norm) based arithmetic operations. In Zadeh’s extension principle [21], by 

using a norm T that replaces the original min and the binary T-norm on the interval [0, 1] is a triangular norm  

(t-norm). 

Definition: A triangular norm (t-norm) T is an increasing associative and commutative 
2[0,1] [0,1] mapping 

that satisfies the boundary condition for every x [0,1] , T(x,1) x . 

Therefore  
x,y,x.y z

A B (z) sup min A(x),B(y)


  
 

% %% % can be written as  
x,y,x.y z

A B (z) sup T A(x),B(y) .


  
 

% %% %  

 Some well-known   continuous T- norm are the minimum operator TM, the algebraic product Tp, and 

Lukasiewicx t-norm TL defined by LT (x, y) max(x y 1,0)   .  The minimum operator TM is the strongest 

(greatest) t-norm.  the Weakest t-norm Tw is defined by 

w

min(x, y), if max(x, y) 1
T (x, y)

0 , elsewhere


 


 Addition of fuzzy intervals based on the weakest     t-norm: 

In this section, the addition based on the weakest t-norm which preserves the shape of fuzzy intervals is 

discussed.   Consider ‘n’ L-R fuzzy intervals  , , , , 1,2,...,i i i i i LR
A l r i n   % , then the Tw- sum  

1

,
n

i
Tw
i

A A



   is 

given by, 
1 1

1 11

, ,max ,max

n nn n n

i i i i i
Tw i i

i ii

A A l r
 

 

 
     
 
 
  .   In the addition based on the minimum operator, the 

resulting spreads are the sum of the incoming spreads, while for the addition based on weakest t-norm resulting 

spreads are the greatest of the incoming spreads. Moreover, each t-norm may be shown to satisfy the following 

inequalities, ( , ) ( , ) ( , ) min( , )w MT a b T x y T a b a b   where

, 1

( , ) , 1

0 ,

w

a if b

T a b b if a

otherwise




 


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Two characteristics can be observed in the previous research.  First, the addition/ subtraction of fuzzy 

numbers by TM and Tw preserve the original shape of the fuzzy numbers. With the TM in the 

multiplication/division, the shapes of the original FNs may not be preserved.  However, for given shapes, in 

multiplication, the Tw preserved the original FN’s shape.  Second the weakest t-norm operations can elicit more 

exacting performance, meaning smaller fuzzy spreads within uncertain environments. This exact performance 

may successfully reduce accumulating phenomena of fuzziness in complex systems.  The addition, subtraction, 

multiplication and division of Tw fuzzy arithmetic can be seen in the following: 

 Let   ( , , ) , ( , , )A A LR B B LRA a B b     % % be two L-R fuzzy numbers. The fuzzy operations of Tw can be 

shown as follows: 

(1) Addition: 

( ,max( , ),max( , ))W A B A B LRA B a b  % %    
 

(2) Subtraction 

( ) ( ,max( , ),max( , ))W A B A B LRA B a b  % %    
 

(3) Multiplication: 

 

 

( ,max( , ),max( , )) , 0

( ,max( , ),max( , )) , , 0

( ,max( , ),max( , )) , 0, 0

0, , , 0, 0

0, , , 0, 0

(0,0,0) , 0, 0

A B A B LR

A B A B RL

A B A B LL

W

A A LR

A A RL

LR

ab b a b a for a b

ab b a b a for a b

ab b a b a for a b
A B

b b for a b

b b for a b

for a b

   

   

   

 

 






 
 

 

   

 

% %e











 

The cut   arithmetic if repeatedly performed in an equation will accumulate the fuzziness of all fuzzy 

numbers involved.  This property can be observed in complex systems when performed for each fuzzy interval.  

Therefore in order to reduce fuzzy accumulation the fuzzy arithmetic operations adopt the weakest t-norm 

arithmetic operations. 

III.  LEAST ABSOLUTE DEVIATION (LAD) 

A. LAD BASED ON CONJUNCTION PROBLEM (Pushpa et al.[22]) 

To reduce the overall error of the model outputs, a new LAD function based on conjunction problem defined 

by Tanaka [11] is used. Let the h-level inequality possibility measure of two fuzzy numbers 

   1 1 1 2 2 2, ,A a and A a   % %  is defined as inequality of two fuzzy numbers 1 2A and A% %

  1 1 1 1
1 1 2 2 1 1 2 2( ) ( ) ( ) ( )a L h a L h a L h a L h                  

where ia is the center and  i  is the spread. In order to minimize the distance between the two fuzzy numbers 

based on the above measure of inequality  

 

B. LAD BASED ON SYMMETRIC DIFFERENCE (Pushpa et.al [23]) 

A method of estimating the regression coefficients using a length of the symmetric difference between the 

observed and the predicted response were considered. If ( , )i i iA a % denotes a fuzzy number, then the addition 

and subtraction for two fuzzy numbers i jA and A% % in that form are  ,i j i j i jA A a a  % %    .  

Generally regression analysis uses a method of minimizing the distance between the observed and predicted data 

to construct the regression model.  However, the method of minimizing the sum of the difference between the 

actual and predicted outputs cannot be used.  On the other hand, Assuming the length of the fuzzy number as the 

difference between the two end points. Thus the length of the fuzzy number iA% is 2 i  and denoted by 

( ) 2i jm A %  . Therefore, the length of symmetric difference between two fuzzy numbers i jA and A% % is 

denoted as, 
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( ) ( ) ( ) ( ) ,

( )

2( )

i i j j i i j j

i j i j

i j i j

a a a a

m A A if A A

if A A

   



  

% % % %

% %

       



   


     
The Least absolute deviation based on the symmetric difference between the observed and the estimated 

response variable is defined as follows. 

i i i iL L U U
LAD Y Y Y Y   

) )
% % % %  where iY% is the observed response variable and iY

)
%is the estimated response 

variable.  Using the Tw – norm based operations, the above distance can be defined as 

       
1 11 1

max , max ,

n n
T T

i j ij ij j i i i j ij ij j i i
j p j p

LAD a x a x y e a x a x y e

   

   
              
   
   

 
 

C. LAD BASED ON HAUSDORFF DISTANCE 

Based on the distance between the centers and spreads, a least absolute deviation method is discussed for fuzzy 

linear regression using Tw norm based arithmetic operations.  Several metrics are defined on the family of all 

fuzzy numbers. The generalized Hausdorff metric fulfill many good properties and easy to compute in terms of 

generalized mid and spread functions If ( , )Hd A B  is the Hausdorff metric between crisp sets A and B   

given by,  ( , ) max sup inf , sup infH
a A b Bb B a A

d A B a b a b 
  

  

  
   

  

     

If    1 1 2 2 1 2, ,I a a and I b b  are two intervals, then  

    1 2 1 1 2 2 1 2 1 2, max ,Hd I I a b a b mid I mid I spr I spr I           (1) 

where 1 2 2 1
1 1,

2 2

a a a a
mid I sprI

 
   (Trutsching et al. 2009)  

 The generalized Hausdorff metric between symmetric triangular fuzzy numbers 

TT bBaA ),(
~

,),(
~

   using(1), is then, 
1( , ) ( )HD A B a b L   % %      

1

1

1 1 1 1

0

1

[0,1]

( , ) , ( ) , 0.5

( , ) , sup ( ) , 1

D A B a b L L L d L

D A B a b L L L L


   

  

% %

% %





   


     

     


 

The least absolute deviation based on the Hausdorff distance between the observed and the estimated response 

variable is defined as follows. T TY a x 0.5 e xi i i i    using equation (1) where iY%
 
is the center of the 

observed response and
 

Ta xi  is the center of the estimated response variable.  ie
 
is the spread of the observed 

response and T
ix  is the spread of the observed response. Using the Tw – norm based operations, the above 

distance can be defined as  TLAD y a x 0.5 e max a xi i i j ij, ij j
1 j n

,    
 

 

IV FUZZY LINEAR REGRESSION USING LEAST ABSOLUTE DISTANCE AS OBJECTIVE 

 FUNCTION 

A linear regression model of fuzzy numbers that has a relationship between a response variable  (a symmetric 

triangular fuzzy numbers) and explanatory variables  (with crisp / fuzzy numbers) are considered. The aim 

is to fit a fuzzy regression model with fuzzy coefficients to the   aforementioned data set as follows:

0 1 1i w w i w w p w ip w i

ˆ
Y A ( A X ) ..... ( A X ) A X       % % % %% % % %,                      (2) 

iY%

iX%

1,....i n
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where  , , 1,...j j jA a j p  %  are symmetric fuzzy numbers and the arithmetic operations are based on the 

weakest t- norm. Fuzzy linear regression analysis can be seen as an optimization problem where the aim is to 

derive a model which fits the given dataset.  The parameters are optimized in such a way that the difference 

between the observed outputs and the estimated ones are made as small as possible.  

To show the fitness (performance) of the fuzzy linear regression model, we compare the fuzzy estimated 

response of the model with the observed one  where ‘i’ is the index of the data.  There are different 

measures to determine the similarity between two fuzzy numbers. Here the similarity measure based graded 

mean integration representation [24] is used, which gives more accurate results.  The similarity measure is just 

for comparison purposes, and any other type of objective function can be designed and then applied.  

1
( , )

1 ( )
i i T

i i

S Y Y
ABS a x y


 

)
% % . The similarity measure varies between 0 and 1, so the closer the value to 1, the 

better the model.  However for the sake of conformity, the dissimilarity measure [1- ( , )i iS Y Y
)

% % ] is considered and 

the value closer to 0, the better the model.  Based on the LAD defined in the above section, the objective 

function in the optimization problem using the Tw   norm operations is defined as follows: 

 
1

min

n

i

LAD between observed and estimated responses



       (3) 

subject to 

   

 

 

 

1 1

10

1 1

10

1

( ) max , ( )

( ) max , ( ) , 0 1,

max , 0, 1,2,...

k

j ij j ij ij j i i
j kj

k

j ij j ij ij j i i
j kj

j ij ij j
j k

a x L h a x y L h e

a x L h a x y L h e h

a x i n

 

 

 

 

 

    

      

    




 

where the variables are ijx : value of the jth independent variable for the ith observation, 𝑦𝑖 : value of the 

dependent variable for the ith observation, and the parameters are 𝑒𝑖 : spread of the dependent variable for the ith 

observation, h : target degree of belief,     ja : midpoint of the jth regression coefficient, j  : spread of the jth 

regression coefficient, k : number of independent variables, n : number of observations.  

 

V Example: SYMMETRIC FUZZY INPUT AND OUTPUT DATA SET 

Consider the data set in Table 1 in which the observations of the input and output variables are symmetric 

triangular fuzzy numbers with their center and spread. Sakawa and Yano [25] introduced this fuzzy input – 

fuzzy output dataset which is given in Table 2.1.  Many approaches present in the literature (Nasrabedi and 

Nasrabedi [26], Diamond [27], Kao and Chyu [28], Chen and Dang 2008, Sakawa and Yano [25], Hojati et al 

[29] have used this data set for validation purposes.  The proposed method is compared with some methods such 

as Hong et al [20], Nasrabedi and Nasrabedi [26] and Diamond [27], they applied least square method. The 

result of fitting model to the FIFO data set is given in Table 1. 

 

iY%
i

ˆ
Y%

iY
)
%

iY%
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Fig.1 Comparison of Fuzzy regression using Conjunction problem with Diamond’s method, Hong’s method 

 

 
 

Fig. 2  Estimated fuzzy linear regression model using the LAD distance with conjunction problem with Tw – 

norm based operations 

 

 

Fig. 3  Estimated fuzzy linear regression model using the LAD based on the symmetric difference with Tw – 

norm based operations 
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Fig.4  Estimated fuzzy linear regression model using the LAD based on the Hausdorff difference between the estimated 

and observed responses with Tw – norm based operations 

 

Table 1 Comparison between the similarity measures between different LAD models for fuzzy input and fuzzy output 

dataset 

Explanatory 

variable 

Response 

variable 

Similarity measure 

Conjunction 

problem 

Symmetric 

difference 

Hausdorff 

distance 

Hong et al 

method 

Nasrabedi 

& 

Nasrabedi 

Method 

Diamon

d 

Method 

(2.0, 0.5) (4.0, 0.5) 0.5682 0.9833 0.6452 0.5682 0.9833 0.6452 

(3.5, 0.5) (5.5, 0.5) 0.9950 0.6400 0.9049 0.9950 0.6400 0.9049 

(5.5, 1.0) (7.5, 1.0) 0.4938 0.4282 0.5048 0.4938 0.4282 0.5048 

(7.0, 0.5) (6.5, 0.5) 0.5848 0.6309 0.5371 0.5848 0.6309 0.5370 

(8.5, 0.5) (8.5, 0.5) 0.6431 0.6693 0.7722 0.6431 0.6693 0.7722 

(10.5, 1.0) (8.0, 1.0) 0.5195 0.4478 0.4294 0.5195 0.4478 0.4294 

(11.0, 0.5) (10.5, 0.5) 0.4292 0.5101 0.5290 0.4292 0.5101 0.5290 

(12.5, 0.5) (9.5, 0.5) 0.7117 0.5102 0.5121 0.7117 0.5102 0.5120 

 Average 0.6182 0.6025 0.6043 0.5893 0.6131 0.5929 

 

V A CASE STUDY USING LAD BASED ON HAUSDORFF DISTANCE 

As an example with multiple inputs given in Table2, the fuzzy linear regression model obtained by the LAD 

with Hausdorff distance approach is 1 2 3(0,1.2346) (0,0.7213) (0,0.9505) (0.3414,0.2537)w w w w w wY X X X      %  with 

optimum value h= 0.2464  and the graph is given in Fig5  In the above table 2, third data is an abnormal data, 

using   the proposed approach which is insensitive to the outlier yielded a better result. The table 4 explains that 

the mean similarity measure for the proposed model is 0.314 which has effective performance with other 

existing methods in the literature. 
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Fig.5 The proposed fuzzy regression equation for the data set in Table 4 

 
Table 2. Kim and Bishu’s data set [14] using the proposed approach 

Obs. 

Dependent 

variable 

(response 

time) 

Independent 

variable 

(Inside control 

room 

experience) 

Independent 

variable(outside 

control room 

experience) 

Independent 

variable 

(Education) 

Estimated  

( , )i iy %  

Similarity 

measure 

Goodness 

of  fit 

Team 1 (5.83,3.56) 2 0 15.25 (5.206,3.868) 0.615612 0.99296 

Team 2 (0.85,0.52) 0 5 14.13 (4.823.4.752) 0.201074 0.566704 

Team 3 (13.93,8.5)* 1.13 1.5 14.13 (4.823,3.584) 0.098944 0.566709 

Team 4 (4, 2.44) 2 1.25 13.63 (4.653,3.458) 0.605107 0.98783 

Team 5 (1.65,1.01) 2.19 3.75 14.75 (5.035,3.752) 0.228055 0.602016 

Team 6 (1.58,0.96) 0.25 3.5 13.75 (4.694,3.488) 0.243096 0.612613 

Team 7 (8.18,4.99) 0.75 5.25 15.25 (5.206,4.99) 0.25161 0.915005 

Team 8 (1.85,1.13) 4.25 2 13.5 (4.608,3.425) 0.266085 0.692983 

    Average  0.313698 0.742102 
* indicates the outlier data 

Table. 3 Comparison of different models available in the literature for the data set in Table 2 

Method Estimated fuzzy regression function 

Similarity 

measure 

using [24] 

This work 1 2 3(0,1.2346) (0,0.7213) (0,0.9505) (0.3414,0.2537)w w w w w wY X X X      %  0.314 

Choi and Buckley’s [30] 1 2 32.8273 0.3878 1.0125 0.6185 (0,1.0696,2.0042)Y X X X        %  0.2155 

Chen Hseuh [16] 1 2 316.7956 1.0989 1.1798 1.8559 (0,2.8888)Y X X X        %  0.1222 

Hassanpour et al. [31] 
1 2

3

( 2.8273,0.0000) (0.3877,0.0000) (1.0125,0.000)

(0.6185,0.1790)

Y X X

X

      



%
 0.1630 

Taheri and Kelkinnama 

[18] 1 2 315.5578 (0.2444,0) (0.9976,0) (1.5142,0) (0,1.13)Y X X X        %

 
0.2019 

 

CASE STUDY  

To verify the performance of the proposed fuzzy linear regression method, we apply the method on the 

following practical problem of investigating the relationship between Diesel Fuel properties and emissions from 

engines.  The air pollution has become more serious due to automotive emissions in the last few years.  The 

manufacturers must introduce new techniques to control the emissions.  Investigation of the effect of the fuel 

properties on the emissions from engines is important for controlling the emission from the engines and thus 
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decreasing the air pollution.  Selecting the fuel properties as the independent variables and the emissions from 

engines as the dependent variables, linear regression equations can be constructed with the statistical method.  

The relationship between the fuel properties and emissions can be analyzed with the equation.  Since the fuel 

properties correlative with each other, when studying the effect of one of the properties must be separated from 

the other properties.  The relationship between the fuels properties and emissions can be analyzed with the 

equation.  Since the fuel properties correlative with each other, when studying the effect of one of the properties 

must be separated from the other properties. The relationship between the fuel property and the emission is 

fuzzy.   

This study constructs the fuzzy relationship between fuel properties and the emission using the proposed 

method.  The results obtained with the equations are analyzed and discussed. 

The sample data used in this paper come from the paper [32].  Eleven fuels with different properties were 

given in Table 4. Table 5 gives the emissions from engines HC, CO NOX, PM.   

Table 4 The properties of the fuels 

No. 1 2 3 4 5 6 7 8 9 10 11 

Q/kg/m3 829.2 828.8 857.0 855.1 828.8 855.5 826.9 855.1 855.4 826.6 827 

P/% 1.0 7.7 1.1 7.4 7.1 7.6 1 7.3 8 1.1 0.9 

CN/   51.0 50.2 50.0 50.3 50.6 50.2 49.5 54.8 59.1 58 57.1 

T95/0C 344 349 348 344 346 371 326 345 344 347 329 

 

Table 5The emissions form Engines /g/km 

No. 1 2 3 4 5 6 7 8 9 10 11 

HC 0.085 0.085 0.111 0.103 0.085 0.099 0.089 0.083 0.073 0.063 0.066 

CO 0.432 0.431 0.551 0.517 0.446 0.513 0.454 0.434 0.378 0.331 0.327 

NOx 0.556 0.564 0.532 0.546 0.556 0.539 0.554 0.552 0.559 0.534 0.551 

PM 0.048 0.052 0.061 0.063 0.051 0.066 0.045 0.065 0.066 0.051 0.049 

 

By analyzing the properties of the fuels, fuel 1, 3, 4, 5, 7, 8, 9, 11 along with the corresponding results of the 

emissions are selected as the simulation samples.  They are used to construct the fuzzy linear regression 

equations.  Fuels 2, 6, 10 along with the corresponding results of the emissions are selected as the prediction 

sample.  They are used to analyze the prediction ability of the Fuzzy linear regression equation. 

Selecting density, polyaromatics, Cetane number and back end distillation as the independent variables and one 

of the emissions HC, CO NOX or PM as the dependent variable.  The fuzzy linear regression equation obtained 

in the form  0 1 1 2 2 3 3 4 4w w w w w w w wY A A X A X A X A X        %  where i i iA (a , )   

The solution of the above equations is transformed into the solution of the following linear programming 

problem with the simulation samples: 

 ,
1

1 1

1
min 0.5 max 1

1 ( )

m m
T

i i i j ij ij j Tj n i ii i

y a x e a x
abs a x y 

 

  
        

       
   

Subject to  

  

 

 

 

1 1

10

1 1

10

1

( ) max , ( )

( ) max , ( )

max , 0, 1,2,...

n

j ij j ij ij j i i
j pj

n

j ij j ij ij j i i
j pj

j ij ij j
j p

a x L h a x y L h e

a x L h a x y L h e

a x i m

 

 

 

 

 

    

    

    




 

Because the sizes of different independent variables vary widely, in order to remove the effect of the sizes of 

them on the regression coefficients, the data is transformed into deviations from the average. 
Table 6 Fuzzy regression coefficients 

  No.  X0 X1 X2 X3 X4 

Average 

Similarity 

measure 

MAPE 

HC ai 0.8583×10-1 0.2188×10-3 0 0 0.3835×10-3 98.96% 0.126 
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Table.7 The simulation results calculated with the Fuzzy linear regression equations  

Simulation 

samples 
1 2 3 4 5 6 7 8 

Similarity 

measure 

HC 

LL 0.0674 0.0651 0.0665 0.0681 0.06 0.0674 0.0662 0.0612  

Center 0.0843 0.0919 0.0899 0.085 0.0769 0.0904 0.0901 0.07809 98.96% 

UL 0.1012 0.1187 0.1133 0.1019 0.0938 0.1138 0.114 0.0950  

CO 

LL 0.3553 0.388 0.3728 0.362 0.291 0.3763 0.3729 0.3015  

Center 0.4393 0.472 0.4568 0.446 0.375 0.4603 0.4569 0.3855 95.42% 

UL 0.5233 0.566 0.5408 0.53 0.459 0.5443 0.5409 0.4695  

NOx 

LL -1.1694 -3.2853 -1.1701 -2.2271 -1.137 -1.6932 -1.1592 -1.1276  

Center 0.5489 0.5477 0.5481 0.5485 0.5471 0.5537 0.559 0.5565 99.49% 

UL 2.2672 4.3807 2.2663 3.3241 2.2312 2.8006 2.2772 2.2406  

PM 

LL 0.04799 0.0608 0.0629 0.0508 0.0449 0.0603 0.0656 0.0473  

Center 0.0481 0.0609 0.063 0.0509 0.045 0.0649 0.067 0.0483 99.96% 

UL 0.0482 0.061 0.0631 0.051 0.0451 0.0695 0.0684 0.0493  

 

from the average, the average of the dependent variable can be explained by the size of the  fuzzy center of the 

coefficients Comparing with Table 7, because the data of each independent variable has been transformed into 

deviations for the constant x0. The simulation accuracy of the equations is decided by the fuzzy centers and 

fuzzy widths of the coefficients. The fuzzy centers decide the biases of the center values of the simulation 

results to the actual values.  The fuzzy width decides the sizes of the intervals of the simulation results. 

 

 

 

 

 
Fig. 6 Estimated emission of HC 

 

(h=0.28) 
i  0.1698×10-1 0.1763×10-2 0 0 0  

CO 

(h=0.6) 

ai 0.4365 0.6752×10-3 0 0 0.3485×10-2 95.42% 

0.115 

i  0.8403×10-1 0 0 0 0.5336×10-2  

NOx 

(h=0.996) 

ai 0.5512 0 0 0.124×10-2 0 99.49% 
0.0095 

i  1.6841 0 0 0.2005 0.5287  

PM 

(h=0.95) 

ai 0.5601×10-1 0.4639×10-3 
0.4991×10
-3 

0.4056×10-3 0.7769×10-4 99.96% 
0.0066 

i  0.1054×10-2 0 0  0.2282 0  
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Fig. 7 Estimated emission of CO 

 

 
Fig. 8 Estimated emission of NOx 

 

 
Fig. 9.   Estimated emission of PM 

 

Figures 6, 7, 8 and 9 shows that estimated emission HC, CO, NOx and PM values which are in fuzzy have 

more than 95% of similarity measure with the observed ones and the forecasted emissions have MAPE value 

almost nearest to zero.  The estimated center coincides with the observed crisp values in the Fig. 6, 7, 8, 9. The 

trend of estimated center values represents the general trend of the overall system which implies that the system 

has the ability to estimate the trend of the system fuzziness, but also the trend of the system center.  The 
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estimated fuzzy function using the proposed method gives the conventional regression equation which results 

accurate estimated values of emissions. 

 

VI CONCLUSION 

The above used methods are based on LAD using conjunction problem, symmetric difference and 

Hausdorff distance with weakest t-norm based operations and the estimated response is compared with the 

methods that exists in the literature.  It is proved that these methods with Tw- norm based operations are 

efficient and more accurate when they are used with different types of input data and even with outlier dataset. 

The fuzzy regression model with LAD with Hausdorff distance is illustrated with crisp input and fuzzy output, 

data, fuzzy input and fuzzy output data and also with crisp multiple inputs. Selecting the fuel properties as the 

independent variables, and the emissions from engines as the dependent variables, the fuzzy linear regression 

equations are constructed; the simulation results calculated with the equations are analyzed. 
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